10 research outputs found

    A robust braille recognition system

    Get PDF
    Braille is the most effective means of written communication between visually-impaired and sighted people. This paper describes a new system that recognizes Braille characters in scanned Braille document pages. Unlike most other approaches, an inexpensive flatbed scanner is used and the system requires minimal interaction with the user. A unique feature of this system is the use of context at different levels (from the pre-processing of the image through to the post-processing of the recognition results) to enhance robustness and, consequently, recognition results. Braille dots composing characters are identified on both single and double-sided documents of average quality with over 99% accuracy, while Braille characters are also correctly recognised in over 99% of documents of average quality (in both single and double-sided documents)

    Vectorial Signatures for Symbol Discrimination

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceIn this paper, we present a method based on vectorial signatures, which aims at discriminating, by a fast technique, symbols represented within technical documents. The use of signatures on this kind of document has an obvious interest. Indeed, considering a raw vectorial description of the graphical layer of a technical document (e.g. a set of arcs and segments), signatures can be used to perform a pre-processing step before a "traditional" graphics recognition processing, or can be used to establish a classification that can be sufficient to feed a further indexation step. To compute vectorial signatures, we have based our approach on a method proposed by Etemadi et al., who study spatial relations between primitives to solve a vision problem. We considerer five types of relations, invariant to transformations like rotation or scaling, between neighboring segments: parallelism with or without overlapping, collinearity, L junctions and V junctions. A quality factor is computed for each of the relations, computable with low requirements of power. The signature of all models of symbols that could be found in a given document are computed and matched against the signature of the document, in order to determine what symbols the document is likely to contain. The quality factor associated with each relation is used to prune relations whose quality factor is too low. We present finally the first tests obtained with this method, and we discuss the improvements we plan to do

    A Comparison of 2-D Moment-Based Description Techniques

    No full text
    Moment invariants are properties of connected regions in binary images that are invariant to translation, rotation and scale, They are useful because they define a simply calculated set of region properties that can be used for shape classification and part recognition, Orthogonal moment invariants allow for accurate reconstruction of the described shape. Generic Fourier Descriptors yield spectral features and have better retrieval performance due to multi-resolution analysis in both radial and circular directions of the shape. In this paper we first compare various moment-based shape description techniques then we propose a method that, after a previous image partition into classes by morphological features, associates the appropriate technique with each class, i.e. the technique that better recognizes the images of that class, The results clearly demonstrate the effectiveness of this new method regard to described techniques

    A New Swarm-Based Framework for Handwritten Authorship Identification in Forensic Document Analysis

    No full text
    Feature selection has become the focus of research area for a long time due to immense consumption of high-dimensional data. Originally, the purpose of feature selection is to select the minimally sized subset of features class distribution which is as close as possible to original class distribution.However in this chapter, feature selection is used to obtain the unique individual significant features which are proven very important in handwriting analysis of Writer Identification domain. Writer Identification is one of the areas in pattern recognition that have created a center of attention by many researchers to work in due to the extensive exchange of paper documents. Its principal point is in forensics and biometric application as such the writing style can be used as bio-metric features for authenticating the identity of a writer. Handwriting style is a personal to individual and it is implicitly represented by unique individual significant features that are hidden in individual’s handwriting. These unique features can be used to identify the handwritten authorship accordingly. The use of feature selection as one of the important machine learning task is often disregarded in Writer Identification domain, with only a handful of studies implemented feature selection phase. The key concern in Writer Identification is in acquiring the features reflecting the author of handwriting. Thus, it is an open question whether the extracted features are optimal or near-optimal to identify the author. Therefore, feature extraction and selection of the unique individual significant features are very important in order to identify the writer, moreover to improve the classification accuracy. It relates to invarianceness of authorship where invarianceness between features for intra-class (same writer) is lower than inter-class (different writer). Many researches have been done to develop algorithms for extracting good features that can reflect the authorship with good performance. This chapter instead focuses on identifying the unique individual significant features of word shape by using feature selection method prior the identification task. In this chapter, feature selection is explored in order to find the most unique individual significant features which are the unique features of individual’s writing. This chapter focuses on the integration of Swarm Optimized and Computationally Inexpensive Floating Selection (SOCIFS) feature selection technique into the proposed hybrid of Writer Identification framework and feature selection framework, namely Cheap Computational Cost Class Specific Swarm Sequential Selection (C4S4). Experiments conducted to proof the validity and feasibility of the proposed framework using dataset from IAM Database by comparing the proposed framework to the existing Writer Identification framework and various feature selection techniques and frameworks yield satisfactory results. The results show the proposed framework produces the best result with 99.35% classification accuracy. The promising outcomes are opening the gate to future explorations in Writer Identification domain specifically and other domains generally
    corecore